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Abstract. A solid-on-solid model in a field h  ̂ conjugate to !he orientation of the surface is 
exactly solved with the aid of Pfaffians. The free energy f ( h )  directly gives the equilibrium 
shape of a finite crystal. The phase diagram exhibits rough and smooth phases, correspond- 
ing to rounded and flat portions of the crystal surface. The solid-on-solid model undergoes 
transitions of the Pokrovsky-Talapov type characterised by a specific heat exponent (Y =f. 
One special point of the phase diagram corresponds to the appearance of a facet via an 
a = 0 transition. Height-height correlations are derived along a special line in the phase 
diagram. With the aid of the known equivalence of this SOS model with an Ising model, 
several exponents can be translated from one model to the other. This enables us to derive 
the topology of the phase diagram of the antiferromagnetic triangular Ising model with 
first- and second-neighbour couplings in a field. 

1. Introduction 

Solid-on-solid (SOS) models describe the roughening transition of crystal surfaces and 
are also relevant for the description of the equilibrium shape of finite crystals. The 
connection to crystal shapes has recently been reviewed by Rottman and Wortis (1984) 
and Zia (1983). In summary, if one can find the free energy g( &) of an SOS model 
which is constrained to a given average spatial orientation & with respect to the crystal 
axes, then the shape of the corresponding crystal can be obtained via the Wulff (1901) 
construction. This construction, recently reinterpreted by Andreev (198 1) as a 
Legendre transformation, follows from minimising the total surface free energy at 
constant volume. Several interesting consequences of the relation between SOS models 
and crystal shapes have been pointed out by Jayaprakash et a1 (1983), who performed 
explicit calculations in the BCSOS model (van Beijeren 1977). 

Only a few SOS models can be solved exactly. It is therefore of importance to 
extract, from those that can be solved, the maximum of knowledge about the shape 
of finite crystals. Here we investigate a system introduced by Blote and Hilhorst (1982), 
which is probably the simplest exactly solvable non-trivial SOS model. It is particularly 
suited to study the shape of the (1, 1,  1) corner of a simple cubic crystal. The relative 
simplicity of this system is due to the fact that all its properties can be translated 
directly into the properties of a zero-temperature Ising antiferromagnet on the triangular 
lattice. For this reason we shall henceforth refer to this system as the TISOS (for 
‘Triangular’ and ‘Ising’) model. Utilising the Ising equivalence, Blote and Hilkorst 
obtained, among other results, the free energy f( 6) for the TISOS model, where h is a 
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field which couples to the surface gradient. It follows from the arguments by Andreev 
and by Rottman and Wortis that this f ( i )  directly represents the shape of a finite 
crystal, ĥ  corresponding to a spatial direction. The TISOS model implies a rounding 
of the (1 , 1 , 1) comer of a simple cubic crystal, as well as a sharp boundary line between 
the rounded part of the surface and the facets parallel to the three main crystal planes 
(see figure 1). Near this boundary, the tangent to the surface approaches the orientation 
of the facet with a characteristic power f. This power follows directly from the specific 
heat exponent a of the corresponding zero-temperature Ising model, which has the 
remarkable value a = f. 

B Nienhuis, H J Hilhorst and H W J Blote 

Figure 1. Equilibrium crystal shape according to the TISOS model solved by Blote and 
Hilhorst (1982). The crystal is shown in a projection parallel to the (1, 1, I )  direction. The 
shaded area represents the curved part of the crystal surface, and the three remaining areas 
indicate the (1,0, O), (0,1,0) and (O,O, 1) facets. 

In this paper we study the TISOS model with additional interactions: these interac- 
tions favour surface flattening (facet formation) parallel to the (1, 1, 1) plane. It is 
nevertheless amenable to exact analysis. As a consequence, by varying the interactions 
we can study the formation of the (1, 1 , l )  facet, and several other properties of the 
finite-crystal shape. The appearance of this facet is a transition not in the Kosterlitz- 
Thouless (1973) universality class. 

This paper is organised as follows. In 0 2 we briefly review the correspondence 
between the configurations of an SOS model and those of an Ising antiferromagnet on 
a triangular lattice in its ground state. We also recall the relation between the SOS free 
energy and crystal sh!pes. In § 3 we define an SOS Hamiltonian with three different 
couplings in a field h. We then solve the equivalent Ising problem at temperature 
TI, = 0, by means of Haffians. In § 4, we discuss the resulting phase diagram for the 
TISOS model. Several transitions between rough and smooth phases are found. We 
simplify the expressions for the free energy of the smooth phases and find the critical 
behaviour along the critical lines. These results are interpreted in terms of the equili- 
brium shape of the (1, 1 , l )  corner of a cubic crystal and its behaviour near the point 
of facet formation. 

In § 5 we calculate the height-height correlation function for the TISOS model in 
some spatial directions in representative regions of the phase diagram. 

In § 6 we find the correspondence between spin-wave and vortex operators in the 
TISOS model, on the one hand, and temperature and magnetic field operators in the 
Ising antiferromagnet on the other hand. The exponents of these operators are derived. 
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A new result for the Ising model is that in the antiferromagnetic ground state the 
magnetic field H = B/k ,T , ,  is irrelevant, i.e. there is a non-vanishing range of H for 
which the system remains critical. This explains a somewhat surprising numerical 
result for the location of the critical line in the B-T plane by Kinzel and Schick (1981). 
When a ferromagnetic second-neighbour interaction is turned on, the Ising antifer- 
romagnet on a triangular lattice orders in a state characterised by six-fold symmetry. 
This model is believed to be in the same universality class as the six-state clock model, 
which possesses a massless intermediate phase. In 9 7 we discuss qualitatively the 
expected phase diagram of the TISOS model in the presence of such a second-neighbour 
interaction. A brief discussion of our main results is given in § 8. 

2. Ising, dimer and SOS models, and the cubic-crystal shape 

The behaviour of the nearest-neighbour triangular Ising antiferromagnet is dominated 
by the circumstance that not all pairs of interacting spins can be antiparallel. Each 
elementary triangle is frustrated, because at least two of its spins must be of the same 
sign. If all Ising interactions are exactly equal, the ground state of such a model is 
infinitely degenerate. In this section we will describe a correspondence between the 
degrees of freedom that remain in this ground state, and the degrees of freedom of an 
SOS model on the triangular lattice. There is a convenient way to visualise this 
correspondence. 

At zero Ising temperature (if boundary conditions allow, which we shall assume), 
each elementary triangle will contain two bonds between antiparallel spins and one 
between parallel spins. If one erases all lattice edges between parallel spins, one 
obtains a plane filled with rhombi or diamonds (figure 2 ) .  Such a diamond covering 
can also be interpreted as the irregular surface of a truncated simple cubic lattice, 
viewed from the (1, 1, 1) direction. The apparent heights are precisely the possible 
configurations of the TISOS model. The correspondence between allowed Ising configur- 
ations and diamond coverings has another useful consequence. Each rhombus can be 
associated with a dimer on the dual lattice. Hence these Ising and SOS models are 
also equivalent to a dimer model on the honeycomb lattice, the problem being to cover 
the entire lattice with dimers in such a way that each site is the end point of precisely 
one dimer. These dimer models can be solved directly with the aid of Pfaffians. 

For a more precise description of the mappings of Ising onto SOS configurations, 
we divide the elementary triangles of the lattice into two kinds: those pointing to the 

Figure 2. Illustration of the mapping of a zero-temperature Ising configuration onto a 
diamond or dimer configuration. A diamond configuration is obtained by erasing all edges 
of the triangular lattice which connect parallel spins. 
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right and those pointing to the left. We assign height differences between the sites of 
the triangular lattice as follows. Going clockwise along the edges of each triangle 
pointing to the right, we associate a height increment +1 with the edges connecting 
antiparallel spins, and an increment -2 with those connecting parallel spins. An 
equivalent procedure to find these height increments is to use the triangles pointing 
to the left and to follow a counterclockwise path. This is illustrated in figure 3. It is 
obvious that the sums of the height increments vanish along elementary triangles, and 
consequently along all closed paths. Hence height differences between two sites of 
the triangular lattice do not depend on the path chosen for its determination. Further- 
more, if we fix the value of a height variable n, at site i, say n, = 0, then all other height 
variables n, follow directly from a given ground state Ising configuration. SOS configur- 
ations obtained in this way are subject to the following restrictions. 

A 

+ 

.L 

A 

Figure 3. SOS height differences as obtained from 
zero-temperature king configurations. Height incre- 
ments + I  and -2 are assigned to bonds between 
antiparallel spins and parallel spins respectively. In 
order to obtain the sign of the height differences, the 
paths along which the increments are defined are 
clockwise and counterclockwise for the two triangle 
orientations shown. Thus the sign of each height 
difference becomes independent of the choice of the 
triangle for its determination. 

( 1 )  As shown in figure 4, the height 

Figure 4. Division of the triangular lattice into three 
triangular sublattices. We have labelled the sublat- 
tices such that the height variables on sublattice i 
( i  = 0, I ,  2 )  are equal to i plus a multiple of 3. 

variables modulo 3 on each of the three 
sublattices only assume the values 0, 1,  and 2, respectively. 

(2) Height differences in, - n,l between nearest neighbours i and j do not exceed 2. 
Conversely, from each SOS configuration subject to these restrictions, one can obtain 
an king configuration by requiring that odd and even height variables correspond to 
spins of different sign. If we fix the value of a given Ising spin, then the values of all 
other Ising spins follow. Furthermore, it is easily checked that this Ising configuration 
obeys the T = 0 antiferromagnetic constraint that no elementary triangle should contain 
three spins with equal signs. Hence, there is a one-to-one correspondence between 
allowed Ising and TISOS configurations if one site variable is fixed in each model. 

The SOS free energy models the thermodynamics of the surface of a crystal. The 
shape of the crystal can be found from the condition that this free energy be minimal. 
The minimisation procedure results in a remarkably simple relation between the surface 
free energy and the crystal shape. This relation was found recently by Andreev (198 1 ) .  
Since it plays an important r6le in this paper, we derive it again below. 

The shape of a crystal can be written as an equation of the form 
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where r l ,  r2 and r3 are the coordinates of points on the surface. For the entire crystal 
S is a double-valued function, but we may deal with one branch at a time. The 
orientation of the crystal surface, 6i, is the directon of the vector m = ( m , ,  m,, - l ) ,  with 

m, = a s ( r l ,  r 2 ) / a r J  with j = 1,2 .  (2.2) 

The shape S minimises the total surface free energy 

F =  a m , ,  m2) dr1 dr2, (2.3) 1 
for fixed values of the volume 

V =  S ( r , ,  r2)  dr ,  dr,. J (2.4) 

Here the surface free energy density g (  6i) = g'( m,, m2)/ lml ,  and mi are implicit functions 
of rj through (2.2). The corresponding Lagrange equation is 

where A is a Lagrange multiplier and summation from 1 to 2 over doubly occurring 
indices is understood. The Legendre transform of the crystal shape S is a function of 
the same arguments as g: 

T ( ~ I ,  mz) =mjr j -S ( r~ ,  12).  (2.6) 

As a consequence it is more straightforward to solve (2.5) for T and find the crystal 
shape from it. Note that the following expression follows identically from the definition 
of T 

ar, /am, = a 2 T ( m , ,  m,)/dm, am,. 

U m , ,  m2) = a m , ,  m2)/A. 

(2.7) 

Therefore an obvious solution of (2.5) is 

(2.8) 

Though we do  not know the general solution of the Lagrange equation, it appears that 
(2.8) is the physically significant solution. Hence 

(2.9) 

which looks much like the Legendre transform of g(m, ,  m,), as already suggested by 
(2.8). Indeed if we introduce 

s ( r 1 7  r2) = m]rJ - g ( m l ,  m 2 ) / A ,  

f ( h , ,  h 2 ) =  h]mJ-i(mI, m 2 )  

(2.10) 

(2.1 1) 
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This f( h , ,  h,)  is the interfacial free energy as a function of the fields conjugate to the 
gradient of the crystal surface. Hence the shape of the crystal itself is a three- 
dimensional plot of its interface free-energy density. The value of A in ( 2 . 1 1 )  is 
determined by the constraint (2.4). 

3. The TISOS model and its solution 

We shall now assign energies to the configurations described in the previous section. 
The energy of a pair of neighbouring sites i and j depends only on the height variables 
n, and n, on these sites. We shall describe the interaction between these sites by 
coupling strength parameters K ,  chosen such that the reduced energy (energy divided 
by k g T )  of a pair of nearest neighbours is K ,  if the height difference In, - n,I is 2, and 
- K ,  if the height difference is 1. Hence 

The sum is over all pairs of nearest neighbours ( i , j ) ,  each pair being counted once. 
One possibility is to let the K ,  depend only on the direction of the bond (ij). Then 
K,, E { h , ,  h2, h3} ,  the h, being defined in figure 5. Such couplings have the character 
of a field coupling to the average slope of the SOS surface. To make this clear we may 
describe the nearest-neighbour height differences by a discrete gradient vector V n ,  = 
( nlTe,  - n,, nlTe2  - n,, n,,,, - n , ) .  Here the el are three unit vectors on the triangular lattice 
at angles of 27r/3, chosen such that each of the three components of V n ,  can only 
take the values -2 or + l .  It is then possible to verify that (3.1) can be cast in the 

6 

5 

L 

1 3  

1 

0 1 2 3  

k 

Figure 5. Definition of the coupling strengths of the 
TISOS model considered in this work. The interac- 
tions depend on the orientation of the bond as well 
as on the labels of the sublattices connected by the 
bond. For K ,  = 0, we get the couplings discussed 
following equation (3.1). 

Figure 6. Dimer weights in terms of the fugacities 
defined in equation (3.3).  In order to allow easy site 
labelling with integer coordinates (k, I ) ,  the honey- 
comb lattice is deformed to a brick lattice. The sites 
of this lattice can be divided into six types as indi- 
cated. Sites with the same type number are connected 
by translational invariance of the Hamiltonian. 
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equivalent form 

where N, is the total number of sites. This anisotropic model was investigated recently 
(Blote and Hilhorst 1982). It was exactly solved via the equivalence with the zero- 
temperature triangular Ising antiferromagnet. For sufficiently strong field anisotropy, 
the system locks into a configuration with the maximum slope allowed by the constraints 
(all dimers in the same orientation in figure 4). This transition has a specific heat 
exponent cy = 4, in contrast to the usual roughening transition for which cy = -W. The 
ground state does not allow local excitations, only above the transition temperature 
do excitations appear; these have a ‘string’ nature, and they extend over distances as 
large as the lattice. The string picture of the SOS model is not only useful for 
understanding its properties, it also demonstrates the relation with six-vertex models, 
by interpreting the strings as paths of inverted arrows with respect to the completely 
polarised state. Phase transitions with this type of excitations and cy =; have been 
described as commensurate-incommensurate transitions (see e.g. Villain and Bak 198 1, 
and references therein) or as Pokrovsky-Talapov ( 1979) transitions. To our knowledge 
the first example was, however, the KDP model solved by Wu (1968). He showed that 
this model was equivalent to a dimer model on the honeycomb lattice (which is, via 
the mapping given in § 2, equivalent to the SOS model investigated by Blote and Hilhorst 
(1982)). Wu solved the dimer model with the Pfaffian technique introduced by 
Kasteleyn (1963) for dimer models. 

At present we will study a more general SOS model which not only includes these 
three fields h, but also three position-dependent couplings K,. For the total coupling 
between a pair ( i ,  j )  with orientation p we write K,  = h, + K ,  where the subscript v 
indicates one of the three hexagonal graphs into which the bonds on the triangular 
lattice can be divided. The resulting total couplings K ,  are shown in figure 5. The K ,  
have a very different nature from the fields h,; a sufficiently strong K ,  will favour the 
SOS surface to be parallel to the (1, 1, 1 )  plane. Hence we may expect interesting effects 
from the competition between the gradient fields h, and the sublattice fields K,. For 
the solution of this model, we make use of the diamond or dimer representation (Blote 
and Hilhorst 1982). Boltzmann weights for the dimers are found by assigning the SOS 

energies of the erased bonds in figure 2 to the corresponding diamonds and by sharing 
the remaining SOS bond energies out between pairs of adjacent diamonds, each diamond 
representing a dimer. To this purpose, we introduce the fugacities 

U = exp( - K ,  + K ,  + K 3 )  

v = exp( + K ,  - K 2  + K,) 

x = exp( - h ,  + h2 + h3) 

y = exp( + h ,  - h, + h3)  (3.3) 

w = exp( + K ,  + K 2 -  K 3 )  z = exp( + h ,  + h, - h 3 ) .  

The Boltzmann weight associated with a dimer is a product of two factors: one factor 
depends only on the orientation of the dimer and may assume the values x, y ,  or z ;  
the other factor is position-dependent and may assume the values U, v,  or w. Figure 
6 shows these dimer weights on the honeycomb lattice. The lattice shown is rec- 
tangularly deformed in order to allow for easy site labelling with integer coordinates 
k and 1. The sites are divided into six types as indicated in the figure. For dimer 
statistics on the honeycomb lattice, the boundary conditions are important. We choose 
a rectangular system of K x L sites with periodic boundaries. In SOS language, this 



3566 B Nienhuis, H J Hilhorst and H W J Blote 

corresponds to periodic boundary conditions of the type: 

nk+K,/ = nk./ + A I ,  n k , L + /  = nk,l  + A 2  (3.4) 

where A I  and A2 are multiples of three. Following Kasteleyn (1963), we can write the 
partition function of the dimer model as a linear combination of Pfaffians. In the 
thermodynamic limit, it is sufficient to calculate the Pfaffian of an antisymmetric 
KL x KL matrix A with elements given by 

lAkl,k,l,l = U v W X y z  exp(-2h, -2K,), (3.5) 

if the sites ( k  I )  and (k‘ 1’) are coupled by a bond with direction on the subgraph 
determined by v ;  all other elements are zero. Furthermore, the sign of the matrix 
element is positive if k’ = k + 1 or I’ = 1 + 1, and otherwise negative. Fourier transfor- 
mation converts A into a matrix consisting of 6 x 6  blocks, H ( p , - q ) ,  given by: 

-ia,So . . .  
-ialS- 

-iaoS+ 

. . .  * . .  I’ \ aoco a,C- aTC+ 

a: C- a, C+ a,C,  

with the symmetry property 

4 ( P ,  9 )  = -&7-,(P,  q ) ,  i , j =  1,2,. . . , 6  

and with 

So= x s inp  + ( y + z )  sin q 

S ,  = x sin p + ( y  + z )  sin ( q  * 2 ~ / 3 )  

CO = x cos p - ( y  - 2 )  cos q 

a,= u + v  + w 
a ,  = U +pu + p * w  

j3 = e x p ( 2 ~ i 1 3 ) .  

c, = x cos p - ( y  - 2 )  cos ( q  * 2T/3) 

(3.7) 

The angles p and q assume the values ( K ,  L even) 

p = ( r / K ) ( O ,  1 , . . . ,  K - l ) ,  q=(2r /3L)(O,  1 , .  . . , L -  1).  

Because of its symmetry property, the effective size of H can be further reduced. Define 
a matrix 

K=-( 1 1  1) 
J 2  R -R 

where the submatrices are of size 3 x3,  and 

R. .  IJ = 8 ~ , 4 - j  i , j  = 1,2,3.  

It follows easily that 
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with 

(3.10) 
-iaoSo+aoCo -ia,S- + a , C -  -iaTS+ +aTC+ 

A I 2 = f  -iaTS-+aTC- - iaoS++aoC+ - ia ,So+a ,Co 1 -ia,S+ + a , C +  -iaTSo+aTCo -iaoS- +aoC- 

and AZI = -A;2, 
If we use that Pf A = (det A)"2, and that the determinant is invariant under the 

applied transformations, the free energy per site f of the TISOS model in the thermody- 
namic limit follgws, after some algebra, as: 

f=- 2 lim l o g Z = y  24 7~ jO2=dp ~ 0 2 ~ d q l o g ( ) r e ' D + t e 3 ' D -  r? e-3iq + tz e3"q2) (3.1 1 )  
K L  K,L-+x  

with 
3 t ,  = uuwz . 3 s = ( u3 + u3 + W~)XYZ, t = uuwx3, ty=uvwy,  

One easily sees that f is equal to f log t plus a function of ( u3 + v 3  + w3)/ uvw, y / x ,  and 
z/x. Thus we have solved what is effectively a three-parameter model. 

4. Phase diagram and critical behaviour 

The criticality condition of the TISOS model is related to the occurrence of zeros in 
the expression between absolute value signs in (3.11). Thus we require the real and 
imaginary parts to be simultaneously equal to zero: 

s cos p + t cos 3p - t- cos 3q = 0 

s sin p + t sin 3p + t+ sin 3q = 0 

(4 . la )  

(4.lb) 

with t ,  = ty * t,. We find that there exists a region in parameter space (s, t, t,, t - )  
where such zeros occur. The corresponding values of the coordinates ( p ,  q )  in these 
points generally depend on the parameters s, f ,  t ,  and t-. Phase transitions are 
associated with hyperplanes separating regions with and without zeros in parameter 
space. In these critical planes, solutions of (4.1) are marginally existent; they occur 
at coordinates (po, qo) which will appear to be constant in each critical plane. The 
corresponding phase transition can be investigated by expansion of (4.1) in the point 
( po,  qo). We consider four cases. 

(1 )  sin po=  sin qo= +1 
We put cos p = P, cos q = Q, and expand (4.1) to second order in the small quantities 

(4.2a) 

(4.2b) 

Equation (4.2a) shows that P and Q are proportional; equation (4.2b) shows that 
solutions for small P and Q are possible when -s + t + t+  is small and has the right 
sign. These solutions vanish in the point (P, Q )  = (0,O) when -s + t + t, goes through 
zero, or, in the original weights, 

P and Q: 

(s - 3 t )  P + 3 t-Q = 0 

i(9t  - s ) P 2  + f f + Q 2  = -s + t + t+.  

( u 3  + u3 + w 3 ) / u u w  = (x' +y3 +z~)/xYz.  (4.3) 
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( 2 )  sin po  = -sin qo = i 1 
We put P = cos p ,  Q = -cos q. Expanding (4.1) in P and Q gives 

(3t - s ) P - 3 t - Q  = 0 

t ( 9 t  - s ) P  -?t,Q* = - S  + t - t ,  2 9  

( 4 . 4 ~ )  

(4.4b) 

and the criticality condition is s = t - 1 ,  or 

( U 3  J - u 3 + w 3 ) / u u w  = ( x 3 - y 3 - z 3 ) / x y z .  (4.5) 

The two remaining cases, 
(3) cos p o  = cos qo = ~t 1 and 
(4) cos po = -cos q o  = * 1, 

can be treated similarly. The results for criticality are 

( U 3 + U 3  + w3) / uuw = ( - x 3  + y 3  - z 3 ) /  xyz  

( U 3  + u3 + w3)/  uuw = ( - x 3  - y3 + z3) /xyz .  

(4.6) 

(4.7) 

Equations (4.3) and (4.5-7) can be combined into a single equation giving the whole 
set of critical surfaces of the system, namely 

(4.8) 

with i = * l , j = * l ,  k = * l ,  i j k = + I .  
In figure 7 we show the critical lines for the case where v = w and y = z. The first 

condition does, in fact, not imply loss of generality because the model depends on U, 
U and w effectively only through one parameter. Equation (4.3) is represented by the 
two lines separating phases F and R (standing for flat and rough, as we shall show in 
the subsequent discussion). The third line represents equation (4.5) and is the boundary 
of the flat phase X. Two other phases, to be labelled Y and Z, form a triplet together 
with X, but are not visible in this figure since the critical surfaces given by (4.6) and 
(4.7) do not intersect with the plane of figure 7. 

The expansion in the variables P and Q such as given above for the determination 
of the boundaries of the F phase can also be used to find the leading critical behaviour 

( u3 + u3 + w 3 ) /  uuw = ( ix3 +jy3 + k z 3 ) / x y z  

3 

2 

Ul v 

0 
X l Y  

Figure 7. Phase diagram of the TISOS model for the case y = z and U = w. The two critical 
lines between R (rough) and F (flat) phases follow from equation (4.3). The critical line 
between the R and X phases follows from equation (4.5). 
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near this boundary. This is done in appendix 1. The result is given in terms off, ,  the 
singular part of the free energy per site, and the temperature parameter A defined as 
A =  s - t -  t , :  

;rf,/dA - (df,/dA) = 0 if A 2  0, 

df , /aA-  (afJaA)A=o- ( -A)”*  if A S  0. 
(4.9) 

The specific heat like quantity cA = a2f,/aA2 behaves in a non-singular way in the F 
phase. However, it diverges as 

CA- l/(-A)”2 (4.10) 

in the R phase when the boundary with the F phase is approached. Note that we have 
assumed s # 3t in appendix 1 : if this assumption does not hold, we may still obtain 
the results (4.9) and (4.10) provided t -  # 0 (by integrating first over Q in equation 
(Al.2)). 

The case s = 3 t  and t -  = 0 in the critical surface is special: it is important how the 
critical point is approached. We first consider the case t = ty = t ,  (the line x / y  = 1 in 
figure 7). This is worked out in appendix 1. The singularity in the free energy is found 
to obey 

(4.1 1) 

Note that A 2 0 always for the path chosen here: we approach the critical point from 
the F phase. If we put U = w = uo, and U = uo( 1 + a ) ,  then A -  3 a 2  for small cy and 

(4.12) 

The second derivative of fs with respect to U diverges logarithmically: the singularity 
is similar to that of the two-dimensional Ising model. 

If we approach the point x = y = z, U = U = w while U = U = w, the free energy does 
not behave singularly. In this case the model reduces to that investigated by Blote 
and Hilhorst (1982); in the present notation, it has only singularities at x = y  + z  and 
cyclic. A similar derivation at the boundaries of the X, Y and Z phases again shows 
an cy = f  singularity when the boundaries are approached from the R phase. No 
singularity appears on the other sides. This is in agreement with earlier results (Blote 
and Hilhorst 1982) which apply to the line u / u  = 1 in figure 7.  These results indicate 
that phase X is flat and without excitations, and that R is a rough ‘floating’ phase. 

For a further investigation of the character of the different phases, we make use 
of simplified expressions for the free energy which are derived in appendix 2. These 
are as follows. 

df , /dA - (df,/aA),,o- -log A. 

afs/au = ( i / u O ) ( a f s / a ~ )  = -(2& log L Y ) / ( & T U O ) .  

( 1 )  Phase F, s >  t + t ,  + t , :  

f = f  log(xyz) +f@, U, w), (4.13) 

where f is the reduced free energy per site when x = y = z = 1. It is given in appendix 
2 as a function of U, U and w. 

(2) Phase Y, t ,  > s + t + I,: 
f= logy+f log(uuw) .  (4.14) 

The free energies of the X and Z phases follow simply by using symmetry arguments. 

(4.15) 

(3) Phase X, t > s + c y  + t , :  

f =  log x +f log (uuw). 
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(4) Phase Z, t ,  > s + t + fy: 
f =  log z +f log(uvw). (4.16) 

From equations (4.13-16) we see that the free energy depends linearly on the fields 
h, ,  h, and h3 in the F, X, Y, and Z phases. The slopes of the crystal surface are 
constant in these phases; they correspond to the (1,1, l), (1,0,0), (0, 1,O) and (0, 0, 1) 
planes of the crystal respectively. The X, Y and Z phases are characterised by the 
absence of thermal excitations; in the F phase local excitations do occur. 

As was pointed out (see § 2), our result for the free energy determines the equilibrium 
shape of a crystal. More precisely, from (3.2) and (3.3) we see that the quantity 

f = f - ' 1  3 OdXYZ) (4.17) 

describes this shape. Figure 8 shows a (1, 1 , l )  corner of a crystal for the case that U ,  

o and w are not equal (the case U = o = w was shown in figure 1). The appearance of 
the (1, 1, 1) facet is a consequence of this inequality. 

- 

Figure 8. An equilibrium crystal shape according to 
the TISOS model, for the case that not U = U = w. For 
U = U = w, the ( I ,  I , ] )  facet disappears (see figure 1). 
The curved part of the crystal surface is shown by 
the shaded area. 

Figure9. Illustration of the calculation of the height- 
height correlation function via dimer occupation 
numbers. The equivalence of the dimer and SOS 

models is shown in B 2. 

5. Height-height correlation functions 

A result for the height-height correlation function was given for the case x = y = z, 
U = o = w by Blote and Hilhorst (1982). Here we present a calculation for the more 
general case U = o = w. This parameter subspace intersects the X, Y, Z and R phases, 
but not the F phase. The first step is to express height differences in dimer occupation 
numbers. This procedure is illustrated with the help of figure 9, in which a typical 
SOS configuration is shown, together with the associated dimer configuration on the 
dual lattice. The mappings given in 5 2 relate the height difference hi - hi-,  between 
sites Pi and Pi-l to the dimer occupation number Ni of sites ai and bi, where the 
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nearest-neighbour pair (a,, 6,) is dual to the pair (J‘,, 

n, - n z - l  = 3N, - 1. (5.1) 

g(r)=([(n,-no)-(n,-no)12)  ( 5 . 2 )  

The height-height correlation function 

can now be written 

These expectation values follow by differentiation of the partition function: 

a2 log Z (  Ki, K j )  
g ( r ) = 9  i c 

i = l  j = l  aKi aKj (5.4) 

where K,  is the reduced energy associated with a dimer covering sites a, and 6, ; at 
present, exp(-K,) = z. The next step is to calculate Z ( K , ,  K,) when K ,  and K, are 
allowed to differ infinitesimally from logz. The partition function of this slightly 
perturbed model is written as the Pfaffian of an antisymmetric matrix A. Let A, be 
the matrix for the uniform model (defined in 9 3, K ,  = K, = -log z ) ;  then we may write 
the matrix for the model with different K ,  and K, as 

A = A. + A, (5.5) 

where AI is a matrix with only few non-zero elements. One finds 
l a  a i a  a 

det(A’) -- - det(A’)- det(A’) - _  - __ 
2 aKi aKj 

with A’= B+Ai1 - A l .  
A’ has only few columns with non-zero off-diagonal elements. For this reason, it 

reduces to a tractable effective size. Further, A, can be inverted without difficulty and 
after some algebra one obtains 

a’ log Z / a K ,  aK,,, = [cos(2nwC) - 1]/2.rrzn2 
with 

U ,  = coscl[( x2 - y2 - z2)/2yz] (5.7) 
where we have supposed x 3 y  and x s z .  

Equation (5.6) applies to n = 1,2, .  . . . The case n = 0 is special and yields 

a2iogz/aKf=w,/.rr-wf/.rr2. ( 5 . 8 )  
If x > y + z  (so that there is no solution for U,),  then the system is flat, and g(  r) = 0. 

Substituting (5.7) and (5.6) into (5.4), we obtain 

We make use of the following expansions: 

‘ 1  Tr2 1 1 1 c :=--- +---+. 
j = 1 j 2  6 r 2r2 6r3  

(5.9) 

(5.10) 

(5.1 1 )  
r 1  1 1  1 :=-y+logr+--- 

j = l  J 2r 12r2+* 
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1 1 cos[(r+1)x]-cos(rx) 1 cos(rx) 1 
j = ~  J 4 2 6 2  1 -cos x r2 1 -cos x r3 

cos( r x )  1 
j = ~  j 2 2( 1 -cos x) r 2(1 -cos x) r2 

- _  -+ . . .  (5.12) 
cos(jx) 1 * 1 2 .z=-x --.nx+-*2-- 

cos[( r + l )x]  - cos( rx) 1 - _  - log(2 - 2 cos x)  - 
$, cos(jx) 1 - -- 

cos( rx) - cos[( r - l)x] 
2( 1 -cos x)2 

cos( rx) -+. . . - (5.13) 

For equations (5.10) and (5.11) see e.g. Rottmann (1960); equations (5.12) and (5.13) 
can be derived by substitution of I,“ dpp’-’ e-p’ for j - ’  ( i  = 1,2), execution of the 
summations, and expansion of the integrals. 

g ( r )=(9 / r2) [ log(2rs in  w , ) + y + 1 + ( ~ - c o s ( 2 r o , ) / 4 s i n 2 w , ) / r 2 + .  , .]. (5.14) 

Hence, the system is rough if x < y + z (x 3 y ,  x 3 z). The deviations from flatness 
behave as (log r)’” for large r, just as in the Gaussian ( h o p s  1977, JosC et  a1 1977) 
and BCSOS (van Beijeren 1977) models. Remarkably, the coefficient does not depend 
on the fugacities x, y and z. Since the X, Y and Z phases do not have thermal excitations, 
it follows that they have zero deviation from flatness. This conclusion does not apply 
to the F phase, which does have thermal excitations. However, these local excitations 
cannot affect the global slope of the surface. This is evident from the free energy (4.14) 
which depends (via x, y and z) linearly on the fields h , ,  h2 and h,: there is a plane 
facet of non-zero extent. This provides evidence that the F phase is smooth, i.e. g ( r )  
remains finite when r + W. On the other hand, the dependence of the free energy (3.1 1) 
in the R phase is such that the slope of the surface varies with the fields: the crystal 
surface is rounded. This, together with the result (5.14), demonstrates that the R phase 
is rough. 

Substitution in equation (5.9) gives 

6. Correspondence between Ising and TISOS operators 

The equivalence between the zero-temperature antiferromagnetic triangular Ising model 
and the TISOS model (Blote and Hilhorst 1982) can be utilised in two directions. It is 
possible to work out the exact solution of the Ising model to make predictions for the 
equivalent TISOS model (and thus for a cubic crystal shape). Here we work the other 
way: using known properties of SOS models we calculate some new properties of the 
triangular king model. 

The critical behaviour of SOS models is usually formulated in terms of spin-wave 
and vortex operators (JosC et aJ 1977). Here we give a summary of the main results; 
for a more extensive discussion the reader is referred to a recent review (Nienhuis 
1984). By a spin-wave operator we mean in this context an interaction term of the form 

SP c COS(2.rm,/P), (6.1) 
j 

where p is the period of the spin wave. In the rough phase there are critical phenomena 
associated with such terms, which can be observed for instance in the singular depen- 
dence of the free energy on S,, 
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asymptotically for small values S,. The exponent is given by 

YF’ = 2 - T~12.p’. (6.3) 

The renormalised temperature, TR, is the ultimate value of the temperature of the SOS 

model as it reduces to a Gaussian model under renormalisation (JosC et a1 1977, 
Nienhuis 1984). For most SOS models TR cannot be calculated exactly. The main 
value of equation (6.3) lies in the specific dependence on p ,  which yields exact relations 
between the exponents of different spin waves, even when the exponents themselves 
are not known exactly. 

Equation (6.2) is valid only when Yk’>O. In this case the spin wave is called 
relevant and a non-zero value of S, causes a transition to a smooth phase. Of both 
relevant and irrelevant spin waves the correlation function decays algebraically for 
large distances: 

(6.4) -2xt ’  (cos[(2.lrlp)(nj-nk)l)- Ir,kl 7 

with XF’ = 2 - YF’, and rjk being the distance between the sites j and k. 
In the SOS model language the spin-wave and vortex operators do not seem much 

alike. They are however related by duality (JosC et al 1977). Let an SOS model be 
defined by means of the height gradient V n  rather than n itself. Only when V n  is a 
conservative field is it possible to define the height variables from their gradient. A 
configuration of V n  which has zero curl everywhere except in a single face of the 
lattice, is a configuration of an isolated vortex. The value of the curl at the singular 
face is the strength of the vortex. Let the SOS partition sum be calculated over 
configurations including those with vortices, such that the density of vortices of strength 
q is controlled by a fugacity V,. Then the free energy of the SOS model in the rough 
phase depends singularly on V, as 

The exponent is given by an equation similar to (6.3) 

Yc’  = 2 - q2/2 TR. 

The renormalised temperature TR of the TISOS model can be calculated from the 
amplitude of the height-height correlation function (5.14). Taking the second derivative 
of the spin-wave correlation function, (6.4), with respect to l lp ,  in the limit p - + m  
yields the equation 

((n,-nk)’)-(Td2r2) log(rjk). (6.7) 

TR= 18. (6.8) 

From equation (5.14) it then follows that 

Thus being provided with the value of TR, we now know the exponents of all spin-wave 
and vortex operators. 

In order to make the above equations applicable to the TISOS model and ultimately 
to the Ising model, we inspect the correspondence between the two models in more 
detail. Figure 3 shows the triangular lattice divided into three sublattices, labelled 0, 
1 and 2. Recall that the height variables on sublattice j can assume values equal to j 
plus an integer multiple of three. On adjacent sites parallel Ising spins correspond to 
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a height difference of two, and antiparallel spins to a difference of one. We adopt the 
convention that even and odd values of the height are associated with Ising variables 
equal to +1 and -1 respectively: 

a, = cos( mj). (6.9) 

Thus a height variable, already limited by the sublattice it sits on, is further constrained 
by the value of the Ising spin, and thus determined up to a multiple of six. This fact 
is illustrated by table I ,  which lists the six possible Ising configurations of an elementary 
triangle of the lattice together with corresponding TISOS configurations. 

Table 1. Ising and corresponding TISOS configurations of an elementary triangle. Each 
TISOS configuration is obtained from the one preceding in the list, by increasing the smallest 
of the three height variables by 3, so that the average height is increased by I .  The 
corresponding Ising configuration follows from equation (6.9). After six levels in the TISOS 

model the same Ising state recurs. 

TISOS king 
Sublattice 0 1 2  0 1 2  

Average 
height 

1 
2 
3 
4 
5 
6 
1 
8 

0 1 2  + - +  
3 1 2  
3 4 2  - + +  
3 4 5  - + -  
6 4 5  + + -  
6 1 5  + - -  
6 1 8  + - f  

9 1 8  

+ _ _  

+ _ -  

The parameters K1, K 2  and K 3 ,  introduced in 0 3, play the role of intersublattice 
coupling constants between the sublattices 1-2, 2-0 and 0-1 respectively. If K ,  < K 2  = 
K,, the configurations in table 1 with average height 3 and 6 are energetically favourable 
over the others, because in these states the sublattices that are most strongly coupled 
are the least separated in height. The same of course applies to any TISOS configuration 
in which the average height of an elementary triangle is a multiple of three. This effect 
is precisely that of a spin-wave term (6.1) with period 3. Therefore it may be expected 
as in equation (6.2) that the free energy is a singular function of 2KI - K 2  - K,, with 
an exponent Yp’ = 1. This is indeed confirmed by the solution of the corresponding 
Ising model. 

A coupling H of the Ising spins to a magnetic field introduces a probability 
difference between even and odd valued heights. This follows directly from the 
definition of the Ising spin, (6.9), and is also evident from table 1. Therefore the Ising 
magnetic field corresponds to a spin wave with period 2 in the TISOS model. The 
exponent then follows immediately from substituting (6.8) into (6.3): Yf) = -a .  This 
result implies, unexpectedly, that the magnetic field in the antiferromagnetic triangular 
Ising model is irrelevant. Therefore the zero-temperature criticality is not destroyed 
by infinitesimal values of the field H, which can only order the model at some finite 
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value H,. The critical value of the physical magnetic field B, = H,kBTI,, however, 
vanishes at zero Ising temperature TIS. Since H, approaches a non-zero constant as 
T,, vanishes, B, approaches zero linearly in TIS. This behaviour was found numerically 
by Kinzel and Schick (1981), but believed by them to be an inaccuracy of their numerical 
method. They expected B, to vanish exponentially with TIS. Sometimes our numerical 
techniques are better than our beliefs. 

Now let us introduce a staggered field in the Ising model, which induces the spins 
on sublattice 0 to be +1 and on sublattice 1 and 2 to be -1. This favours every sixth 
level of the TISOS model and thus corresponds to a spin wave with period 6. Therefore 
the associated critical exponent is Xg) =a, in agreement with the results of Stephenson 
(1970). Based on the exponents of the magnetic and the staggered field the most 
dominant parts of the Ising spin-spin correlation function behave as 

(6.10) 

asymptotically for large values of the distance rjk between the sites j and k. The 
oscillatory term here is given for the case that j and k are separated by a vector parallel 
to a nearest-neighbour bond. For general separation it is a function equal to 1 if j and 
k are on the same sublattice and -1 otherwise. Both the oscillatory and the monotonic 
part may in addition have correction-to-scaling contributions that decay with larger 
powers of rjk. From the equivalence with the TISOS model we cannot predict the values 
of A and B. 

Thus far we have always considered the Ising model at zero temperature. It is 
possible however to express the Ising temperature variable in SOS terms. Besides the 
six possible configurations of an elementary triangle listed in table 1, at finite TI, the 
three spins can also be all up or all down. The implication is clearly visible in figure 
2. In the direction of the arrows the value of V n  is -2 at all three sides. This is clearly 
not a possible SOS configuration. In fact it is a vortex of strength 6, since after a closed 
walk round the triangle there is a mismatch in the height of 6. The fugacity of these 
vortices is exp(2J), in which J is the nearest-neighbour Ising coupling constant. 
Therefore this parameter is relevant with exponent Y c )  = 1, in agreement with Houtap- 
pel’s (1950) solution. The vortices in the TISOS model correspond to dislocations in 
the crystal surface. However, they are in thermal equilibrium with other surface 
excitations. In real crystals surface dislocations constitute the end points of dislocation 
lines in the bulk, which, as far as the surface is concerned, should be considered as 
quenched. 

An important drawback of the solution for the crystal shape as obtained from the 
triangular Ising model, is the fact that there is no parameter to vary the TISOS 

temperature. Varying the temperature of the crystal does not necessarily correspond 
to varying the prefactor of the Hamiltonian in the partition sum. It is however possible 
to find a parameter in the Ising model that has the intuitive effect of a temperature in 
the TISOS model. A second-neighbour pair of Ising spins which are parallel correspond 
to equal heights. If the Ising spins are antiparallel the heights differ by 3. Therefore 
introducing a ferromagnetic second-neighbour coupling in the triangular Ising model 
is like lowering the temperature of the TISOS model. Unfortunately the Ising model 
with first- and second-neighbour coupling has not been solved, and can therefore be 
of no use in understanding the TISOS model. However, since a number of Ising operators 
have now been identified as spin-wave and vortex operators, the dependence of their 
exponents on TR is known, and can be utilised to study the Ising model. 
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7. The Ising phase diagram and the crystal shape 

Figure 10 shows a qualitative picture of the phase diagram of the triangular antifer- 
romagnetic Ising model with first- and second-neighbour coupling J and L, and 
coupling to a magnetic field H. Critical sections of the phase diagram are indicated 
by the shaded planes and the heavy segment of the L axis. The parameter exp(2J) 
will be loosely referred to as (Ising) temperature, since exp(2J) = 0 corresponds to 
zero temperature. The thermal and magnetic exponents, YT and YH, associated with 
exp(2J) and H respectively, are as derived above 

(7.la, b )  Yj- = 2 - 181 TR, Y H  = 2 - TR/ 8. 

TR<4 4<Tu<9 9<Tuc12 12<TR<1b l b < T R  

Figure 10. Phase diagram of the antiferromagnetic triangular Ising model with first- and 
second-neighbour interaction J and L, respectively, and magnetic field H. In ( a )  the boldly 
drawn segment of the L-axis and the shaded regions of the L H  plane and of the L e ”  
plane mark transitions with continuously varying exponents. Other transitions are not 
shown here. In ( b )  some intersections of the phase diagram at fixed values of L are given. 
The heavy lines again indicate transitions with continuously varying exponents, the broken 
curves transitions with three-state Potts exponents and the double line a first-order transi- 
tion. The way in which the various transition lines meet, follows from RG arguments. 

The origin exp(2J) = L = H = 0 corresponds to the isotropic point U = U = w and 
x = y = z, of the exact solution in § 3. At this point, since TR = 18, the magnetic field 
is irrelevant, so that the model remains critical for finite values of H. If the field 
is sufficiently strong, however, the model orders into one of the three phases where 
two sublattices are up and one is down. The Ising temperature is relevant with 
exponent 1. 

We now let the second-neighbour coupling L increase, so that TR decreases. The 
first qualitative change happens at TR = 16, where H becomes relevant, and the critical 
range of H vanishes as a consequence. The next event is at TR=9, where the 
temperature becomes irrelevant, so that beyond this point the Ising model remains 
critical up to some finite temperature, terminating in a Kosterlitz-Thouless (1973) 
transition. Finally, at TR = 4, the spin wave with period 1, which is present in the TISOS 

model proper, causing the heights to be integral, becomes relevant as well. For larger 
values of L, when TR<4, the TISOS model is no longer rough, and correspondingly 
the Ising model here has an ordered low-temperature phase, at which the field causes 
a first-order transition. This ordered phase is separated from the high-temperature 
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phase by a finite critical regime. This latter phase pattern corresponds with the generally 
accepted idea that this Ising model is in the six-state clock universality class (JosC et 
a1 1977). However the way in which this diagram emerges as the second-neighbour 
coupling increases, was not known previously. In particular, as evident from figure 
10, the zero-temperature critical point of the antiferromagnetic nearest-neighbour 
triangular Ising model ( T R  = 18), does not correspond to the upper (TR = 9) or lower 
( T R  = 4) transition of the six-state clock model, nor even to a point in between. 

The spin-wave and vortex operators have thus been shown to be equivalent to some 
simple quantities in the Ising model. Another question is their physical meaning for 
actual crystal shapes. In some alkali halogenides like NaCl the two species of ions 
form two interpenetrating FCC lattices, which together make up an sc lattice. It can 
be thought of as built up, in the (1,  1, 1) direction, of layers, consisting alternately of 
Na+ and C1- ions. Suppose the crystal is in equilibrium with a melt or solution with 
an excess of Na' ions, electrically compensated by large negative ions, which due to 
their size cannot easily be implemented as defects in the NaCl lattice. Then it will be 
statistically favourable for the crystal that the exposed surface consists of Na' ions 
rather than Cl-. This difference in chemical potential between the two species of ions 
is thus a physical realisation of the spin wave with period 2 ,  in the TISOS model, and 
of a magnetic field in the corresponding Ising model. 

The spin wave with period 3 can be realised in slightly more complicated crystals, 
consisting of three species of ions in equal numbers. They can be built up as follows. 
Take a triangular lattice of ions of species 1 in the base plane. Ions of species 2 are 
deposited straight above the left-pointing triangles of the first lattice. Likewise ions 
of species 3 are deposited straight above the left-pointing triangles of species 2, and 
so on in cyclic order. The resulting three-dimensional lattice is then like a simple cubic 
lattice, in which three sublattices are populated by different ions. Possibly the lattice 
structure is stretched or compressed in the (1, 1, 1 )  direction. The surface of the crystal 
can be described by a TISOS model with the three sublattices coupled unequally. A 
difference in concentration of the constituent ions in the melt or solution with which 
the crystal is in equilibrium, has the effect of a spin wave with period 3, since the 
exposed surface will prefer to consist of the most abundant ions. 

In the solution of the TISOS model, discussed in 0 4, a (1,  1, 1 )  facet appears with 
a radius proportional to U - U (see figure 7 ) ,  that is for the actual crystal proportional 
to the mismatch in concentration of the three species of ions. This, however, cannot 
be expected to hold generally at all temperatures of the crystal. The way in which the 
phase boundaries in figure 7 approach the point (1,  1) is governed by the ratio of 
the exponent of U - U and that of x -y.  When the temperature is varied, TR changes 
and the exponent of U - U varies as Y:S' according to equation (6.3). The exponent 
of x - y  however does not change, but remains equal to 1, since x and y couple to 
V n .  Therefore the (1, 1, 1) facet appears with a radius Rc 

where p is the excess concentration of one of the species, and p = 3. For crystals of 
the NaCl type the same equation holds with p = 2 .  The exponent Y f )  < 2 ,  but is not 
otherwise constrained. When YF) < 0 the facet appears only at non-zero values of p 
via a Kosterlitz-Thouless ( 1973) transition. 

When p = 0, i.e. in a cubic crystal with no distinction between the sublattices, the 
(1,  1, 1) facet can appear spontaneously, as the temperature is lowered beyond TR= 4. 
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This also happens via a Kosterlitz-Thouless transition (compare Jayaprakash et a1 
1983). 

8. Conclusion 

We summarise the results of the previous sections. There are four flat phases in the 
TISOS model. These correspond to the (1,0,0),  (0, 1, 0), (0, 0, 1 )  and (1 ,  1, 1) facets of 
a cubic crystal. There is one rough phase in the TISOS model; it corresponds to the 
curved part of the crystal surface, which separates the flat parts. Criticality of the 
TISOS model corresponds to the boundary lines on the crystal surface between the flat 
and curved parts, The critical behaviour of the TISOS model is of the commensurate- 
incommensurate (Pokrovsky-Talapov) type. As a consequence, close to the flat facets, 
the slope of the curved part of the surface behaves as the square root of the distance 
to the boundary of the facet. This is in agreement with the behaviour found for related 
models (see e.g. Jayaprakash et a1 1983, Rottman and Wortis 1984 and Zia 1983). 
However, the appearance of the ( 1 ,  1, 1) facet is related to a phase transition of the 
TISOS model with a specific heat exponent a = 0, whereas a corresponding transition 
in the model investigated by Jayaprakash et a1 (1983) has a = --CO. This difference 
can be understood with the picture sketched in $ 7, which contains (at zero Ising 
temperature) a non-universal line of critical points, with varying a. 

The relevance of the TISOS model for real crystals is subject to some limitations. 
In the first place, the height differences in the SOS model are restricted to two possible 
values, and ‘overhangs’ are absent. However, we do not expect that the phase transitions 
found in our model are drastically modified by these restrictions, which pertain to the 
microscopic interactions between neighbouring atoms. Of course, the TISOS model 
only allows one to investigate the (1 ,  1, 1) corner of the crystal. An exact treatment 
of a whole crystal would require a simultaneous description of all corners, and this is 
outside the scope of the TISOS model. 

Further, the TISOS Hamiltonian depends only on height differences between nearest 
neighbours : it depends on the slope of the crystal surface, but not on its curvature. 
This may have some consequences (Fisher and Wortis 1983, Rottman et a1 1984) when 
there exists a significant curvature on an atomic length scale: such is the case right at 
the boundary lines of the facets in the TISOS model. However, on the macroscopic 
length scale considered in this work, these effects vanish. 

With these limitations in mind, we can nevertheless conclude that the TISOS model, 
which is perhaps the simplest soluble SOS model that goes beyond mean-field theory, 
is rich enough to predict realistic crystal shapes. 
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Appendix 1. Critical behaviour near the phase boundaries 

The singular part of the reduced free energyf, can only arise from integration (equation 
3.1 1) in the neighbourhood of the point po, qo. We first consider the boundaries of the 
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F phase. Thus, for small 1s - t - ?+I, 

fs= (1 /12r2)  d P  d Q  l o g { [ ( ~ - 3 t ) P + 3 t - Q ] ~  

(Al.1) 

Integration is over a region centred about the origin and with linear size S chosen 
such that 1s - t - t+l<< 6 << 1. If s # 3t, one can substitute 

11 
+[s - t - t +  +;(9t - S)P’  + ; t + ~ ~ ] ~ } .  

P =  R-[3t-/(s-3t)]Q 

yielding 

f , = ( 1 / 1 2 r 2 )  J:6 d Q  J’ dR log{AR2+[A+B(CR +Q)’+$t+Q’]’} 

where 

- 6  

A =  s - t - t +  

represents the distance from criticality, and 

(A1.2) 

A = ( S  -3t)’, ~ = P ( 9 t - ~ ) t ? . / ( ~ - 3 t ) ~ ,  C=(s--3t)/3t-. 

The term CR in expression (A1.2) is never dominant and can be neglected. Thus 

(Al.3) 

where D = $B +it+ is always positive on the critical surface. Differentiation with respect 
to A gives 

The integration over R can be carried out. Using S >>A and S >> Q2, 

(Al.4) 

(A1.5) 

Thus 

af,/aA-(ah/aA).=,=o i f A a O  

afJaA- (afs/aA)A=o= -(l /3n)(-A/AD)’I2 
(A1.6) 

if A =z 0. 

The second derivative with respect to A is (if s # 3 t )  singular only for A t  0: 

a2f,/aA2 ~1 [~T(-ADA)’’~]-’ .  (Al.7) 

However, for s = 3 t, there exists one point on the F phase boundary where f behaves 
singularly for A LO: the symmetry point U = U = w, x = y = z. Putting s - 3 t = A, t -  = 0, 
t + = 2 1  in (Al.]): 

f , =  (1/12.rr2) d P d Q  ~ o ~ [ A ~ P ~ + ( A + ~ ~ P ~ + ~ Q ~ ) ~ ] .  il (A1.8) 

The integration is again over a region with linear dimensions of order S.  We neglect 
the first term between square brackets. Substitution of 3P2 + Q2 = R 2  and differentiation 
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with respect to A gives 

a f , / aA= ( 1 / 3 J 3 r )  R dR/(A + tR2) lo6 
and 

af,/aA- (af,/aA),=,= -log A16J371.t. 

(A1.9) 

(Al .  10) 

Appendix 2. The free energy of the F and Y phases 

To calculate the derivative of the free energy of phase F with respect to x we note 
that t ,  and t -  do not depend on x, whereas s and t do: 

(A2.1) 

After decomposing the expression between the brackets in equation (3.11) into two 
complex conjugate parts, one obtains 

(?flax = ( I /a ) ( s  af/& +3t  af /a t ) .  

Substitution of a = s eip + t e3ip gives 

(A2.3) 

The pole occurs within the path described by a in the complex plane when the condition 
for phase F is satisfied. Hence 

af/ax = 1 1 3 ~ .  

Since the model (and the condition for phase F) is symmetric in x, y and z, it follows 
also that af/ay = 1/3y and af/az = 1 1 3 ~ .  

Therefore 

f =; log(xyz) +f( U, U ,  w )  (A2.4) 

in which 7 is the free energy when x = y = z = 1. Substituting this into (3.1 l ) ,  one 
integral can be executed. After some algebra, we obtain 

J ( U ,  U, w)=fIog(uuw)+(2/3r )  dpcosh- '[(a + p  +1)/2]'" r2 (A2.5) 

where a and p are functions of p:  

a = [ ( p  + y y ,  

p =$[(U'+ u 3 +  w 3 ) / u u w -  112-[(u3+ u 3 +  w3)/uuw1 sin2p. 

y = [(U'+ u 3 +  w3) /uuw +3] sin p - 4  sin3 p .  

Also the free energy of the Y phase can be further investigated by a calculation of 
some of its derivatives. Differentiation of (3.1 1 )  with respect to s, and putting e3iq = p 
gives 

(A2.6) 
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Investigation of the integrand shows that there are no poles within the unit circle in 
phase Y (whatever the value of p ) .  Hence we obtain 

Similarly, we find d f l a t  = 0 and a f / d t ,  = 0. Differentiation with respect to ty  gives 

1 
- + cc. 

1 
at, 24r2 p s eip + t e3ip + t,p - t y / p  p 

(A2.7) 

The last factor of the integrand produces a pole at p = 0; the rest of the integrand has 
no poles in phase Y (see (A2.6)). Thus we find 

Integration of these results shows that 

f = f log( 2)  ) +constant. 

From the Hamiltonian described in § 3, we find that in the limit of large f , ,  f = f log( t y )  
so that the integration constant is equal to zero. Thus in phase Y 

f =  log y+flog(uvw). (A2.8) 
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